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Abstract. The two types of transferable semi-empirical tight-binding ( s m )  method for Si 
recently proposed by Goodwin er nl and by Sawada, which are intended to reproduce the 
binding energies and equilibrium volumes of variously coordinated structures of Si, have 
been examined and compared with each other. It has been found that there are some 
drawbacks in the method proposed by Goodwin er 01. and that the method proposed by 
Sawada is much superior. The parameters in the Sawada method have been readjusted in 
order to apply this method to lattice defectsor disorderedsystemsof Si. The present results 
indicate the importance of incorporating the dependence on the local environment into the 
repulsive energy in the transferable SETB method. Thiscan be explained by the origin of the 
repulsive energy. 

Theoretical methods of investigation of atomic structures and total energiesof complex 
systems of Si, such as dislocations, surfaces, grain boundaries, amorphous structure and 
clusters can be classified into the following three groups. The first group contains the ab 
initio methods based on the density-functional theory, which can give very reliable 
results. However, the drawbacks are the limited numbers of tractable atoms and the 
consumption of computing power even in the recent effective algorithm [I]. The second 
group contains the methods using inter-atomic potentials. Recently, various types of 
inter-atomic potentials beyond pair potentials have been proposed for Si, where the 
many-body terms or the dependence on the local environment are incorporated [2-51. 
These potentials are constructed, in general, so as to reproduce the total energies and 
atomic structures of a wide range of phases of Si obtained by the methods of the first 
group [6]. However, it is not certain that potential forms and parameters are applicable 
to any local environment because this type of method does not deal directly with the 
change in electronic structure. 

The third group of theoretical methods are those where total energies and atomic 
structures are given via semi-empirical calculations of electronic structures. This type of 
method intervenes between the former two groups. The semi-empirical tight-binding 
(SETB) method [7] is most widely used for Si in this group. This method can deal with a 
fairly large number of atoms by virtue of simple expressions of electronic structures and 
total energies and has been successfully used for various systems of Si. However, one of 
the most serious problems in this method is that the transferability for structures other 
than fourfold-coordinated ones is not necessarily guaranteed. For example, it is well 
known that the binding energies and equilibrium volumes of close packed structures of 
Siarepoorlyreproducedin theSETBmethodandinsimfiarmethods[8,9]. Ifthisproblem 
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were overcome, the applicability of this type of theoretical method would be greatly 
extended. 

Recently, for this purpose, two types of transferable SETFJ method have been pro- 
posed independently. One was proposed by Goodwin ef al [ l o ]  and the other was 
proposed by Sawada [ 111. Both methods are intended to reproduce the binding energy- 
volume curves of various structures of Si given by the density-functional theory [ 6 ] .  In 
both methods, the behaviour of the two-centre hopping integrals and the inter-atomic 
repulsive potentials for large distances is modified and these are smoothly truncated by 
attenuationfunctions. In addition, in themethodof Sawada, thedependenceon the local 
environment is incorporated in the repulsive energy through the effective coordination 
numbers. In the present letter, these two types of transferable SETB method for Si are 
examined and are compared with each other in view of applying them to lattice defects 
or disordered systems of Si. As will be shown later, it has been found that the method 
of Sawada is much superior to the method of Goodwin et al, and this can be explained 
by the origin of the repulsive energy in the SETB method. 

In the framework of the SETB method [ 7 , 8 , 1 2 ] ,  the binding energy, which is the 
difference between the total energies of the system and the free atoms, is expressed as 
a sum of the band structure energy Ebs and the remaining repulsive energy Erep E,, is a 
sum of occupied eigen energies calculated via the tight-binding approximation, and Erep 
is usually expressed as a sum of short-range inter-atomic repulsive potentials. The two- 
centre hopping integrals V,,, in the tight-binding Hamiltonian are usually expressed as 
V$,,,,(r0/r)". r is the inter-atomic distance, rois the equilibrium distance in diamond Si, 
and n is usually 2 [ 7 , 1 2 ] .  The painvise repulsive potential is expressed, for example, as 
q(ro)(ro/r)",wherernis40r5[8, 13,141. 

Goodwin et a1 [ 101 have proposed that the representation of the equilibrium volumes 
of close packed structures of Si is improved by using the following functional forms for 
the two-centre hopping integrals and the repulsive potential: 

and 

p ( r )  = q ( r o )  (2)" exp [m[ - (')"' + @ n c ] ] .  

These functional formsare those constructedbymultiplyingthe usual forms by smoothed 
step functions so as to be attenuated rapidly between the first- and second-nearest 
neighboursin thediamondstructure. r,isthesteppositionandn,expressesthesharpness 
of the step. For the parameters. firstly, they used n = 2 and determined the coefficients 
V$,fromHarrison[lS].Theotherparametersarem = 4.54,rC = 3.67.&,nn, = 6.48and 
p(ro )  = 3.4581. All these parameters were determined so as to reproduce the equi- 
librium energies, volumes and bulk moduli of diamond and FCC structures of Si [ 6 ] ;  it 
should be noted that the sp energy splitting AE,  was also adjusted for this purpose to 
be 8.295 eV. 

Sawada [ll] has proposed a similar method independently. In this method, the two- 
centre hoppingintegrals are alsoexpressed usinga l/r"form andanattenuation function 
S(r) as: 

Viimm(4 virmS(r)r-" (3) 
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Table 1. The parameter values in the method of Sawada [ll]. AEW=4.39eV, I ,  = 
1.086 A->,ha = 8.511 A-’,na = 3Cil.2715eV.&5, a, = 4.8Z27eVAs. The valuesofa,and a, 
arc those readjusted in this letter. 

Hopping integrals 

ssa spa ppa ppn Repulsive potential 
~ 

Y 4 3 2 2 5 
v ( e V k )  -63.9 27.7 13.1 -2.94 - 
P (A-‘) 5.96 5.96 2.55 2.55 2.55 
Rc (A) 3.17 3.17 3.83 3.83 3.83 

where 

The repulsive potential has a similar functional form, but has dependence on the local 
environment as follows: 

q(rji)  = AzjS(r,j)r;” 

where 

2; is the effective co-ordination number of the atom i and is given by 

Zi = xexp[-A,(r,J - R,)’] 
I # ;  

where 

(7) 

All the parameters in the method of Sawada are shown in table 1. For the parameters 
of the two-centre hopping integrals, different exponent values were selected following 
the work by Robertson [I61 and others were determined so as to reproduce the first- and 
second-neighbour hopping integrals of diamond Si given by Pandey and Phillips [17]. 
The parameters for the repulsive potential were then determined so as to reproduce the 
binding energies and equilibrium volumes of various phases of Si including a dimer. The 
final procedure is the determination of a. and a,. In the methodology used by Sawada, 
ifthe other parameters are selectedproperly, it is possible that the necessarymagnitudes 
of A ,  for respective structures of Si are expressed using a simple functional form of the 
effective coordination numbers such as equation (6) .  Of course, other functional forms 
should be possible for an alternative selection of parameter values. 

Using the above two types of transferable SETB method, we have calculated the 
bindingenergy-volume curvesfor sixcrystalstructuresofSi: FCC, BCC, sc,g-tin, wurtzite 
and diamond structures. In view of applying these methods to molecular dynamics, no 
artificial truncation of the neighbours is used in the present calculations, The axial ratio 
in theg-tin structure is fixedat 0.5516 and the ideal ratio is used for the wurtzite structure. 
The band structure energies have been obtained not by the recursion method [lo, 111 
but by the k space method in order to obtain more accurate results. For integration over 
the Brillouin zone, the special points [18] have been used in wurtzite and diamond 



2196 Letter CO the Editor 

structures. In the other structures, we have used asimple sampling method of a uniform 
mesh. Of course, we had to use sufficiently dense meshes. For example, at the equi- 
librium volume of the sc structure, the difference between the band structure energy 
obtained with the mesh used and that obtained with the mesh 64 times denser is less than 
0.002 eV/atom. The present energy-volume curvesobtained by the above two methods 
areslightlydifferent fromthepublishedones[lO, 111. Thismay becaused by theartificial 
truncation of the neighbours used in the published cases, or by the difference in the 
calculation of the band structure energy. 

In the present binding energy-volume curves obtained by the method of Goodwin 
et al, the reproduction of the equilibrium volumes of FCC and BCC structures is indeed 
much improved as compared with the usual SETB method [8] and the stability of the 
diamond structure and the high-pressure diamond to 0-tin transition are well repro- 
duced. However, if one demands accuracy in a similar range to that achieved with the 
methods using the recent inter-atomic potentials [3-51. there are some drawbacks. 
Firstly, all the calculated equilibrium volumes of FCC, BCC, Sc and p-tin structures are 
about 10% larger than the ab initio results [6] .  Secondly, the equilibrium energy of the 
FCC structure is lower than that of the BCC structure thus differing from the ab initio 
results. Thirdly, the relative equilibrium energies of the sc and P-tin structures against 
thatofthediamondstructureareabout I.6and 1.7timeslargerthan theabinilioresults. 

The first point might be improved by selecting other parameter values w,ithin the 
methodology of Goodwin et a/ because the present equilibrium volume of diamond 
structure is also 6.6% larger than the experimental value. However, the second and 
third points seem to bc difficult to improve simply by ‘rescaling’ in their methodology 
becausethesepointsarealsoseeninthrusuals~~~method[8]. We havetriedtoimprove 
the above points by adjusting the parameters m and q(r0). Under the condition of 
accurate reproduction of the experimental equilibrium volume of diamond structure, 
selection of values for the pairs of m and q(ro) is limited. If one does not care about the 
shift of the absolute values of the binding energies, it  is possible to improve the first 
point,forexample. usingm = 4.72andq(ro) = 3.086. However, in thiscase, thesecond 
and the third points are not yet improved and the equilibrium energies of the FCC and 
BCC structures are in a similar range to  those of sc and P-tin structures. 

An additional most serious drawback in the method and parameters proposed by 
Goodwinetdis that the bandstructureof diamond Si isreproduced to besemi-metallic. 
This is caused by the adjusted large value of AEJp and the non-zero values of the second- 
neighbour hopping intcgrals. This can be understood by analysing the Hamiltonian 
matrix elements of the diamond structure at the r point. Within the second-neigh- 
bour expression, there exist only four types of non-zero elements at the r point. The 
condition that the gap is generated at the r point is E,, - E,. < 14E,,I + 14E,l, 
where E$, = E ,  + 12VS,,(2), Ep. = E,  + 4Vm,,(2) + 8V,,,(2), 4Es, = 4Vss,,(1) and 
4E,Lr = 4(1/3Vppo(1) + 2/3VpPz(1)). 1 and 2 in the parentheses indicate the first- and 
second-neighbour integrals. The value of 14.~~1 + 14Ezxl is about 9.045 eV in the present 
case. However, the value of E,. - Es,is9.075 evanddoesnot satisfy the abovecondition. 
This is caused by the large value of AEsp and the non-zero second-neighbour hopping 
integrals. 

We have examined a smaller value of AElp:foT example, 6.45 eV, and a proper set 
of m and q ( r o )  that can reproduce the equilibrium volume of diamond structure. 
However, the relative energies of the FCC, BE, sc and &tin structures against the 
equilibrium binding energy of the diamond structure are reproduced to be 2 or 3 times 
larger than the ab initio results. It seems that the large value of AEsp is necessary in 
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Figure 1. Binding energy-volume curves for six crystal structures of Si calculated using lhe 
transferable SFlB method proposed by Sawada with the parameters in table 1.  

decreasing the relative energies ofthe close packed structures against the binding energy 
of the diamond structure in the present method. 

Using the method of Sawada, we obtained more satisfactory results. However, 
in the calculations of Sawada [ll], the interactions were truncated after the second 
neighbours in the FCC, BCC, sC and diamond structures. We have found that this affects 
the results substantially. Thus, in order to obtain satisfactory results in the present 
scheme where no truncation of the neighbours is used, we have readjusted only the two 
parameters, a* and a,, following the above-mentioned methodology of Sawada. The 
adjusted parameters are listed in table 1. Figure 1 and table 2 show the present results 
using the adjusted parameters. 

Here, it should be noted that the spin-polarization energy of a free atom is neglected 
in the Sawada method. However, this is not a serious problem. From the viewpoint of 
determining the total energies of various systems against that of the perfect crystal of Si, 
the essential values are the relative binding energies against the equilibrium binding 
energy of the diamond structure. 

As shown in figure 1 and table 2, the observed equilibrium volume of the diamond 
structure is reproduced exactly. All the equilibrium volumes of various structures are 
reproduced with errors less than several percent as compared with the ab initio results 
[a]. The relative energies of various structures against the equilibrium binding energy 
of the diamond structure are also well reproduced. In particular, both the relative 
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Table 2. Equilibrium volumes and binding energies of S i  crystal structures of Si calculated 
usingthetransferablesmmethcdproposed bgsawadawith the parametersin table 1 .  Vmim, 
E,, and AE.!. are the equilibrium volume, the equilibrium bindingenergy and the relative 
equilibrium binding energy against that of diamond structure, V, is the observed volume of 
diamond structure, The values in the parentheses are the ab inirio results 161. 

FCC 0.737 -4.09 
(0.733) 

0.70 
(0.57) 

BCC 0.805 -4.32 0.48 
(0.736) (0.53) 

sc 0.790 -4.45 0.34 
(0.808) (0.35) 

&tin 0.744 -4.51 0.29 
(0.773) 

wurtzite 0.999 -4.78 
(0.27) 
0.013 

(1.015) (0.016) 

equilibrium energies and volumes of sc and P-tin structures are very accurately repro- 
duced. The energy of the BCC structure is reproduced to be lower than that of the FC6 
structure as well as the ab initio results. The calculated bulk modulus of the diamond 
structure is 0.92 Mbu, which is close to the experimental value, 0.99 Mbar. The notice- 
able drawback is only that the relative equilibrium energy of the Fcc structure is over- 
estimated by about 20%. It should be noted that the present results are comparable to 
the results using the inter-atomicpotentialsreeentlyproposed [3-51. Of course, the band 
structure of diamond Si is similarly well reproduced in comparison with that obtained 
by Pandey and Phillips [17]. 

Itcan besaid that the transferables~~~methodproposedbySawadaismuchsuperior 
to the method of Goodwin et a1 in reproducing the binding energy-volume curves of 
various structures of Si accurately. It is now possible to apply the Sawada method with 
the parameters adjusted in the present letter to lattice defects or disordered systems of 
Si where not all the atoms are fourfold-coordinated. We are currently using this scheme 
in calculations of grain boundaries in Si. The method of Goodwin er a1 has serious 
drawbacks and it does not seem that all the drawbacks may be overcome within their 
methodology, as shown above. 

The present results indicate the importance of incorporating the dependence on the 
local environment into the repulsive energy in the transferable SETB method. This point 
can be explained as follows from the origin of the repulsive energy in the SETB method. 
With regard to the origin of the repulsive energy, two types of idea have been suggested. 
The first regards thc origin of the repulsive energy as the electrostatic and exchange- 
correlation interaction. Chadi [7] first proposed that the origin of the repulsive energy is 
the electrostatic effect, namely, the ion-ion repulsion and the doubly counted electron- 
electron correction, Ei-i - E,, within theHartree approximation. Recently, this point 
of view has been extended and clarified within the density-functional theory [19-211. 
Using the stationary approximation to the self-consistent density-functional theory with 
the superposition of neutral atomic charges as an input density, it has been shown that 
the energy terms other than the band structure energy, namely, the doubly counted 
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electron-electron correction, the exchange-correlation correction and the ion-ion repul- 
sion, are well approximated as a simple sum of transferable inter-atomic painvise 
repulsive potentials [20,21]. 

The second tYpe of idea was proposed by Harrison [12,13]. He proposed that the 
origin of the repulsive energy is the overlap interaction, in other words, the non- 
orthogonality between the local basis orbitals neglected in calculation of the band 
structure energy with approximate orthogonalization of basis orbitals. Majewski and 
Vogl[14] have incorporated the overlap matrix to first order into the on-site elements 
of the Hamiltonian and have shown that the overlap interaction generates repulsive 
energy. It should be noted that the repulsive energy caused by the overlap interaction 
cannot be expressed as a simple sum of transferable pairwise potentials in principle, but 
depends on the local environment. 

It can be said that both the two types of idea are right. In other words, both the 
electrostatic and exchange-correlation interaction and the overlap interaction should 
be regarded as the origins of the repulsive energy in the SETB method. Recently, this has 
been shown using the chemical pseudopotential theory [22] and it seems that the overlap 
interaction ismore important with respect to the transferability in t h e s ~ ~ ~  method. This 
is the reason the incorporation of the dependence on the local environment into the 
repulsive energy is important in the present transferable SETB method. Within the first 
type ofidea shown in [20] and [21], it seemspossible to approximate the repulsive energy 
as a simple sum of transferable painvise repulsive potentials, as in the method of 
Goodwin et al. However, it should be noted that the overlap interaction is already 
incorporatedintothebandstructureenergyin[20]and[21], wherethenon-orthogonality 
of basis orbitals is dealt with correctly. In the case of the SETB method using approximate 
orthogonality of basis orbitals where the overlap interaction is not directly incorporated 
into the band structure energy, it is necessary to incorporate the effect of the overlap 
interaction into the repulsive energy in addition to the painvise repulsion based on the 
electrostatic and exchange-correlation interaction. 

Of course, the method of Sawada itself is not intended for incorporating the above 
mentioned effect directly into the form of repulsive energy but is a more phenom- 
enological case and there are other types of SETB method incorporating the dependence 
on the environment into the repulsive energy through the number of bonds [23,24]. 
However, at present, it seems that the method of Sawada is excellent at least in rep- 
resenting the binding energies and equilibrium volumes of various coordinated struc- 
tures of Si. 

Finally, it should be noted that incorporating the overlap effect directly into the 
electronic structure calculation is important with respect to the transferability in 
the electronic structure calculation as pointed out in [25]. It has been shown that this 
type of transferability is possible in the non-orthogonal tight-binding (NTB) method 1261. 
With respect to this point, it has been found that the band structures other than those 
of fourfold-coordinated structures are not necessarily well reproduced in the present 
method of Sawada as compared with the results in [26] because the overlap effect is not 
included in the electronic structure calculation itself. Therefore, in order to develop 
the methods with better transferability in representing not only total energy but also 
electronic structure in future, it might be more effective to reform or supplement such 
methods as the NTB method [26] or the SOB method [9,14], where the overlap effect is 
incorporated in the electronic structure calculation. 

I would like to thank Dr S Sawada for valuable information about his recent work and 
for useful discussions. 
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